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ABSTRACT

Solving a system of non-linear equations has always been a complex issue whereby various 
methods were carried out. However, most of the methods used are optimization-based 
methods. This paper has modified the spectral gradient method with the backtracking line 
search technique to solve the non-linear systems. The efficiency of the modified spectral 
gradient method is tested by comparing the number of iterations, the number of function 
calls, and computational time with some existing methods. As a result, the proposed method 
shows better performance and gives more stable results than some existing methods. 
Moreover, it can be useful in solving some non-linear application problems. Therefore, the 
proposed method can be considered an alternative for solving non-linear systems.

Keywords: Jacobian, log-determinant norm, nonlinear systems, optimization, spectral gradient method 

INTRODUCTION

Solving a system of non-linear equations has always been a complex issue whereby various 
methods were carried out. The scenario becomes challenging if the system does not show 

good linear or polynomial characteristics. 
Non-linear equation systems exist in various 
fields, such as chemistry, engineering, and 
medicine.

Let : n nF R R→  be a continuously 
differentiable function, and then the non-
linear equation systems can be expressed 
as Equation 1:

( ) 0, nF x x R= ∈ 		      (1)
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In solving a system of non-linear Equation 1, some iterative methods exist. Most of the 
methods used are optimization-based. There is a close relationship between solving a series 
of non-linear equations and finding a local minimum. A local minimum of an objective 
function corresponds to the point where derivatives of the objective function are zero. If 
one considers a system of non-linear equations as the derivatives of a particular objective 
function, then seeking a solution to the non-linear system is equivalent to minimizing the 
objective function. Such equations satisfied at the current point are considered constraints 
at each stage, whereas others are considered objective functions. 

This paper proposes modifying the spectral gradient method in solving the non-linear 
systems under a modified backtracking line search strategy. The paper is organized as 
follows: the section materials and methods introduce standard optimization methods that 
compare with the proposed method and the modified spectral gradient method to solve 
non-linear systems. Then, the section “Result and Discussion” shows the numerical results 
of the test problems and some real-life applications. Finally, conclusions will be presented 
in the last section of the paper.

MATERIALS AND METHODS

Standard Optimization Methods 

The standard way of solving a non-linear system of Equation 1 is to assume an initial 
approximation x0 and then perform an iterative formula in the form of Equation 2

1 ,  for 0k k k kx x d kµ+ = + ≥ 							      (2)

where xk is the current solution approximation and xk + 1 is the next approximation of the 
solution for the non-linear system. The vector d k represents the search direction, and the 
scalar μk defines the step length. At each step, the results of the current iteration are used 
as the initial point for the next iteration. To generate xk + 1 closer to the solution, we will 
need to choose an appropriate form of d k and μk.

The steepest descent (SD) method was first raised by Cauchy (1847). It is one of the 
simplest and most well-known methods for minimizing non-linear functions. SD method 
updates the current point μk in the opposite direction of the gradient, gk of the function 
(Equation 3).

k kd g= − 									         (3)

Apart from well-conditioned problems, the traditional SD approach performs poorly. 
Raydan and Svaiter (2002) noted that the bad behavior of the SD approach is not related 
to the choice of search direction. Instead, poor behavior is related to the optimal selection 
of step length by Cauchy. Despite the small storage capacity and very low computational 
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expense per execution, the SD approach has been known as extremely poor and inefficient 
due to the slow convergence speed and oscillatory behavior. Therefore, the SD method is 
not often used in practice.

The convergence of the Cauchy traditional SD method has been deeply studied. 
It has been found that it is related to the spectral properties of the Hessian matrix. De 
Asmundis et al. (2013) recommended a way to improve the SD method. The purpose of 
the modification is to force the gradients into a one-dimensional subspace as the iterations 
progress. It may avoid the key reason for the SD method’s slow convergence, which is the 
classical zigzag pattern.

Hestenes and Stiefel (1952) published the first paper on the conjugate gradient (CG) 
method for solving linear systems. Currently, the CG method is a commonly used method 
to solve non-linear problems of large-scale systems. It performs the update by combining 
the previous and new directions to approximate the optimal solutions. The search direction 
d k and the scalar βk – 1 are defined as Equations 4 and 5

1 1,k k k kd g dβ − −= − + 							       (4)

where

1
1 1

.
T

k k
k T

k k

g g
g g

β −
− −

= 								        (5)

CG method has a small space requirement and good properties for global convergence. 
CG method is characterized to carry out a learning approach that falls between SD and 
Newton’s method (Marini, 2009). The method aims to speed up the convergence rate of 
the classic SD method while minimizing the computational load associated with Newton’s 
method’s processes, such as storage requirement and computation of the inverse Hessian. 

One of the methods that can be used to solve non-linear equations is Newton’s method, 
also known as the Newton-Raphson method. The method was first published by Wallis 
(1095). Simpson (1740) defined Newton’s method as an iterative approach used to solve 
general non-linear equations using calculus. In addition, Simpson claimed that Newton’s 
method could also be used to solve optimization problems by setting the slope to zero. 

However, the weakness of Newton’s approach is that it often fails to converge and 
might be stuck in a repeating cycle. Even the convergence requirements of this approach 
are well understood, but still, this approach depends on the assumption that the initial 
solution is reasonably good. Thus, this method is not considered a successful practical 
procedure. Broyden (1965) also noted another disadvantage: the difficulty of measuring 
the Jacobian matrix. Even though the functions are extremely straightforward to obtain 
their partial derivatives, the efforts needed to determine the matrix may be excessive. The 
execution of Newton’s method will become expensive. 
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Therefore, quasi-Newton approaches have developed. Martinez (2000) has mentioned 
that the quasi-Newton method is a static Newton method and a discrete Newton method.   
If the Jacobian matrix is large for the discrete Newton method, it is not comparable with the 
inexpensive linear algebra models. Nevertheless, discrete Newton algorithms are successful 
in many large sparse problems. Here a large sparse problem means a problem involving a 
high dimensional sparse matrix. In such situations, the limited difference method allows 
us to use a small number of functional calculations to measure the estimated Jacobian. The 
matrix form is not expensive to be factorized.

Quasi-Newton approaches are used for solving unconstrained optimization problems. 
Some quasi-Newton approaches are popular because many linear algebra iterations are 
avoided. Martinez (2000) stated that before 1990, there had been many published articles 
on numerical analysis research of the quasi-Newton method for solving non-linear systems. 
However, the study might be out of practice after the method involved in the usual practice 
of problem solvers in other fields, such as engineering and manufacturing. While the users 
know these benefits and weaknesses, quasi-Newton methods can be used to solve large-scale 
non-linear problems. There are some common quasi-Newton algorithms such as symmetric 
rank-one, Davidon-Fletcher-Powell (DFP), Broyden-Fletcher-Goldfarb-Shanno (BFGS), 
and Berndt-Hall-Hall-Hausman.

BFGS method is part of the quasi-Newton methods. BFGS method can be used to solve 
unconstrained non-linear optimization problems. Instead of directly computing the exact 
Hessian matrix, the BFGS method approximates the Hessian matrix by using a full rank 
matrix. It is an efficient method to deal with small or medium-scale problems. However, the 
BFGS method requires many iterations and function calls in solving large-scale problems. 
When the Hessian matrix is ill-conditioned, an inappropriate initial approximation of the 
Hessian matrix or a poorly defined search direction will result in the inefficiency of the 
method (Cheng & Li, 2010).

The approximation of Hessian Bk + 1 is defined by Equation 6

1
 

, otherwis

f, i

e

0
T T

Tk k k k k k
k k kT Tk k k k k k
k

B
B s s B y yB s y

s B s y s
B

+
−


= >





+ 					     (6)

where sk  and yk are defined as Equations 7 and 8

1k k ks x x+= − 								        (7)

1k k ky F F+= − 								        (8)

and F is the non-linear equation system.
The presence of Jacobian matrix computation during the selection of the step length 

might increase the difficulty. Hence, the modified BFGS approach has been proposed with 
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the backtracking line search techniques that avoid computing the Jacobian matrix. Yuan 
and Lu (2008) introduced a new backtracking inexact BFGS method for solving symmetric 
non-linear equations. The modified BFGS method has a descent property norm, where under 
appropriate circumstances, the global and superlinear convergence will be guaranteed. The 
authors have shown that the modified BFGS method with the new backtracking line search 
is more efficient than the Jacobian matrix computation technique.

Spectral gradient (SG) methods for minimization originated from Barzilai-Borwein. 
Barzilai and Borwein (1988) proposed a two-point step size gradient method. Raydan 
(1993) has developed the convergence for quadratics of the spectral gradient method. One 
unique way of dealing with large-scale problems is the spectral gradient method. This 
method is a nonmonotone step length associated with the gradient approach to overcome 
the Cauchy method’s weaknesses. Different techniques have been proposed since there 
are many variations when choosing the effective step length along the negative gradient 
direction (Biglari & Solimanpur, 2013). This method is obtained by approximation of the 
secant equation for the SD method. At each iteration, a descent in the objective function 
is not guaranteed in the SG method; however, it outperforms the traditional SD method in 
practice (Raydan, 1997). This method delivers better efficiency and low-cost computations 
than the traditional SD method since it needs a small number of storage locations. By 
combining the classical SG method with better nonmonotone line search strategies, the 
method’s effectiveness can be greatly increased (Xiao et al., 2010).

If the Hessian matrix of the objective function is ill-conditioned, it will lead to the 
inefficiency of the gradient methods. The gradient methods have a fixed condition in 
selecting the step length to reduce the function value. Therefore, it will cause the slow 
convergence of a stable complex system. Dealing with the problem of inefficiency, Sim 
et al. (2019) have modified the SG method. This method is proposed to improve the 
slow convergence issues. It operates separately on the gradient vector norm and the 
objective function simultaneously. Furthermore, this method is combined with some line 
search strategies. The line search reduces the function evaluation, whereas an individual 
adaptive parameter damps the gradient vector. The proposed method is developed under 
the backtracking and nonmonotone line search. Finally, the comparison is made between 
the proposed method and some well-known CG-based methods since the CG methods 
have extremely good convergence properties. Sim et al. (2019) proved that the proposed 
spectral gradient method is a comparative alternative for solving large-scale problems. 

The modification of SG methods and their applications have been studied in recent 
years (Abubakar et al., 2020; Antonelli et al., 2016; Ibrahim et al., 2020). For example, 
Raydan (1997) combined the Barzilai and Borwein technique with a nonmonotone line 
search strategy that ensures global convergence. The results show that using the global 
Barzilai and Borwein technique might reduce the gradient evaluations and the number of 
line searches. Besides, the SG method can be accelerated by using an alternating strategy 
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that cycles between the SD and SG steps (Xiao et al., 2010). The Barzilai–Borwein (CBB) 
approach (Dai et al., 2006) contributed significantly to this scheme.

Cruz and Raydan (2003) developed a method for solving non-linear systems of 
equations using the spectral method. The authors present an approach for ensuring 
global convergence based on nonmonotone line search techniques and details of the 
implementation for handling large-scale problems. Zhang and Zhou (2006) have proposed 
an approach for solving non-linear monotone equations. A modified spectral gradient 
approach and a projection method (Solodov & Svaiter, 1998) are combined in this method. 
If the non-linear equations to be solved are monotone and Lipschitz continuous, it has been 
proven to be globally convergent to a solution of the system. This method is also able to 
solve non-smooth equations. 

In recent years, there has been a significant increase in the application of optimization 
techniques. Due to the advantages and disadvantages of different classical optimization 
methods, many modifications have been made. Modifying those methods aims to improve 
the overall performance, such as efficiency, computational time, and convergence rate. In 
a nutshell, various optimization methods are proposed to solve the non-linear system, and 
the SG method has been modified to solve non-linear systems in this paper.

Line Search Strategy 

The backtracking Armijo algorithm (BTA) is a line search strategy to select the best step 
length. The BTA algorithm begins with a large approximation of the step length. Then, 
depending on the local gradient of the objective function, it will gradually reduce the step 
length, known as “backtracking,” until a satisfactory reduction is detected in the objective 
function. The algorithm for modified backtracking line search strategy with Armijo 
condition is given as Equation 9:

Step 0: Given constants (0,1)δ ∈ .
Step 1: Set k = 0 and 1µ = .
Step 2: Test the relation

 				    (9)

where 1
k k kd B g−= − .

Step 3: If Equation 9 does not satisfy, choose a new  and set 1k k= + , then go 

to Step 2. Otherwise, set kµ µ=  and 1k k k kx x dµ+ = + .

Spectral Gradient Method with Log-Determinant Norm

In order to derive an updated scheme for Bk, a restriction for components of Bk under some 
measures is imposed by minimizing the log-determinant norm and allowing them to satisfy 
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the secant equation. Hence, for any positive matrix B, the solution is given by the updated 
1kB +  (Equations 10 & 11):

( ) ( )( )1 1min ln detk ktr B B+ +− 						      (10) 

1s.t. T T
k k k k ks B s s y+ = 							       (11) 

where tr  is the trace of a square matrix, defined as the sum of elements on the main diagonal 
of the matrix;det is the determinant of a matrix. Note that B k is a symmetric matrix; for 
simplicity, this paper only consider the case B k is diagonal.

Let (1) ( )
1 1 1( , , )n

k k kB diag B B+ + += …  and (1) ( )( , , )T n
k k ks s s= … , the minimization Equations 

10 and 11 become Equations 12 and 13:

( ) ( )
1 1

1 1

min ln
nn

i i
k k

i i

B B+ +
= =

   −   
   
∑ ∏ 							      (12)

( ) ( )2 ( ) ( )
1

1 1
s.t. ( ( ) ) 0

n n
i i i i

k k k k
i i

s B s y+
= =

− =∑ ∑ 					     (13)

By applying the Lagrange method to the minimization, Equations 12 and 13 become 
Equation 14:

( ) ( ) ( ) ( ) ( )( )2
1 1 1

1 11

ln ( )
nn n

i i i i T
k k k k k k

i ii

L B B s B s yω ω+ + +
= ==

    = − + −        
∑ ∑∏

		
(14)

where ω  is the Lagrange multiplier. 
Differentiate Equation 14 with respect to ( )

1
i

kB +  and set the derivatives to zero (Equation 
15):

( ) ( )
( ) 2

1 1

11 ( ) 0, 1,2,...,i
ki i

k k

L s i n
B B

ω
+ +

∂
= − + = =

∂
				    (15)

then gives Equation 16

( )
( )( )1 2

1 , 1, 2, ,
1

i
k

i
k

B i n
sω

+ = = …
+

					     (16)

By substituting Equation 16 into constraint Equation 13 and rewriting the left-hand 
side of Equation 13 as a function of  (Equation 17):

( )

( )

2

2
1

( )( )
1 ( )

in
Tk
k ki

i k

sF s y
s

ω
ω=

= −
+

∑ 						      (17)

where the Lagrange multiplier ω  can be obtained by solving the non-linear equation 
( ) 0F ω = . It can be approximated by applying only one iteration of Newton-Raphson, 
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with . When T T
k k k ks s s y> , Equation 17 has a unique positive solution and hence, 

the Lagrange multiplier kω  can be approximated by using Equation 18:

( )
( )

( ) 4

1

    
( )

k

T T
k k k k

n
i

k
i

F
F

s s s y

s

ω
ω

ω
ω ′

=

≈ −

−
=

∑

						      (18)

Lastly, the updating formula for 1kB +  is given as Equation 19

(1) ( )
1 1

1

diag( ,..., ), if 

, otherwise

n T T
k

T
k k kk k

k k k
T

k k

B B s s s y
B s y I

s s

+ +

+

 >


=



				    (19)

Where 
T
k k
T
k k

s y
s s

 exactly the Oren-Luenberger scaling (Luenberger and Ye, 1984), 1kB +  as 

defined in Equation 19 and ω  is defined in Equation 18.
The algorithm for modified spectral gradient method is shown below:
Step 0: Set k = 0. Given initial guessing point 0x , tolerance (0,1)∈  and 0B .
Step 1: If = 0, then stop.
Step 2: Calculate 1k k ky F F+= − , 1k k ky F F+= −  and ω  based on Equation 18.
Step 3: Calculate 1kB +  from Equation 19.
Step 4: Obtain kµ  through the modified BTA algorithm.
Step 5: Compute 1 , 0 for k k k kx kx dµ+ = + ≥ , where 1

k k kd B F−= − .
Step 6:  Set 1k k= +  and go to Step 1.

Convergence Analysis

This section briefly discusses the convergence of the modified spectral gradient method. 
The detailed proofs can be referred to Sim et al. (2019).

Assumption 1. 
a. The objective function f is twice continuously differentiable.
b. The level set { }0: ( ) ( )nD x R f x f x= ∈ ≤  is convex. 
c. There exist positive constants 2M  and 2M  such that 

	
for z D∀ ∈ and z D∀ ∈ . It implies that the objective function f has a unique minimize 

*x in 0x .
Lemma 1. Let 0x  be a starting point and 0B I= , where I  is the n n×  identity matrix. 

( )
( )

( ) 4

1

    
( )

k

T T
k k k k

n
i

k
i

F
F

s s s y

s

ω
ω

ω
ω ′

=

≈ −

−
=

∑
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Then for 1c  defined by Equation 19, the sequence  is bounded by some positive 
constants 1c  and 2c ,  i.e. 1 0 1 20        ...    ...  kc B B B c< < < < < < < .

The proof of Lemma 1 is based on the assumptions provided by Byrd and Nocedal 
(1989). The next lemma is a direct result of Lemma 1.

Lemma 2. Suppose that the assumptions in Lemma 1 hold, then there exist positive 
constants 4c  and 4c  such that

 and 

where 1
k k kd B F−= −  where 1c  is defined by Equation 19.

The convergence of the spectral gradient method using the BTA line search algorithm 
is presented in the next theorem.

Theorem 1. Under assumption by Bryd and Nocedal (1989), there exist positive 
constants 1c  and 2c  such that, for any kx  and any d k with 0T

k kF d < , the step length kµ  
produced by the BTA Algorithm will satisfy either

 
or

 
Furthermore, if kd  satisfies the following conditions:

for some positive constants 3c  and 4c , then

.

In the next section, numerical experiments are conducted to compare the efficiency 
of the proposed method.

RESULTS AND DISCUSSIONS

Numerical Experiments and Discussion

This section applies the modified SG method to solve some non-linear systems. The 
comparison is made between the modified SG method and three other methods under the 
modified BTA line search strategy. The following methods are taken into consideration:

1.	 Modified Spectral Gradient Method (Modified SG)
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2.	 Broyden-Fletcher-Goldfarb-Shanno Method (BFGS)
3.	 Steepest Descent Method (SD)
4.	 Conjugate Gradient Method (CG)
The step lengths kµ are generated by the BTA algorithm with the parameter 0.1δ = . 

The step length 1µ =  is used as the initial step length and reduced if the Armijo condition 
does not satisfy. The minimum value for step length is set as 72− . Since the modified SG 
method and BFGS method require the computation of matrix kB , the matrix B0 is initialized 
to an identity matrix with dimension n.

There are two termination criteria for these methods: the norm of the non-linear 
functions and the number of iterations. The first termination criterion is 
and the maximum number of iterations is set to be 104. If the number of iterations exceeds  
104, the tested problem will be considered “fail to converge.” The codes are written in 
Python 3.7.9.

A total of 31 problems given by Fang et al. (2018) and Andrei (2008) have been used 
to test the performance of these methods. The dimensions of the tested problems are set 
as n = 10, 100, 200 and 500, if the dimensions are not provided in the tested problems.

Using Dolan and Moré’s (2002) performance profile, the performance of the modified 
SG, BFGS, SD, and CG methods can be evaluated clearly. The performance of problem 
p by solver s is defined as Equation 20:

( ) ,
1 size{p :t }

| | p sP t τ τ≤ = ∈Ρ ≤
Ρ

						     (20)

where the function ( )P t τ≤  is the cumulative distribution function for the performance 
ratio, P is a set of test problems, | |Ρ  denotes the cardinality of P and t p,s represents the 
performance ratio within a factor τ which is a real number (Equation 21)

,
,

,min{ : }
p s

p s
p s

m
t

m s S
=

∈
							       (21)

where m p,s represents the performance measure of interest accordingly. It is obtained for 
each pair (p,s ) of solver s in a set S of optimization solvers and problem p in a set P of 
test problems.

Figures 1, 2, and 3 are the performance profiling graphs for these methods, based 
on the number of iterations, function calls, and computational time. Figures 1 to 3 show 
that the BFGS method performs the best among these methods in terms of the number 
of iterations, function calls, and computational time. The modified SG method indicates 
a better performance compared to SD and CG methods.  Besides, SD and CG methods 
exhibit a similar pattern, which shows a poorer performance than the modified SG and 
BFGS methods.
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Figure 1. Comparison of methods in terms of the number of iterations

Figure 2. Comparison of methods in terms of the number of function calls

Figure 3. Comparison of methods in terms of CPU time in seconds
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For the BFGS method, some of the tested problems require an extremely high number 
of iterations, number of function calls, and computational time compared to the modified 
SG method. Therefore, this study concludes that the modified SG method gives a more 
stable result than the BFGS method. One of the reasons the BFGS method gives better 
performance is that it uses the full rank matrix for B k, while the modified SG method uses 
the diagonal matrix in the updating formula of B k. Numerous researchers have suggested 
that the BFGS method is not appropriate for solving large-scale problems since high storage 
is required. Although the modified SG method is not showing the best performance among 
these methods, it is still considered an alternative to solve the non-linear tested problems.

Applications

Systems of non-linear equations occur in many areas of practical importance, such as 
engineering. In order to evaluate the performance of the modified SG method, six systems 
of nonlinear equations are considered. The application problems are provided by Chen et 
al. (2017), Grosan and Abraham (2008), Buzzi-Ferraris and Manenti (2013), and Turgut et 
al. (2014). These problems [(a) - (f)] are applied in both the engineering and science fields. 

(a) Kinematic Application

2 2
1

1 1 3 2 1 4 3 2 3 4 2 4

5 2 7 6 5 8 7 6 7 8 6 8

9 1 10 2 11 3 12 4 13 5

14 6 15 7 16 8 17

1 0

0
1 4

i i

i i i i

i i i i

i i i i i

i i i i

x x
a x x a x x a x x a x x
a x x a x x a x x a x x
a x a x a x a x a x
a x a x a x a

i

+



+ − =
+ + + +
+ + + +

+ + + +

≤




+




+


≤







+ + =

The initial guessing point used is

and the coefficients 1 17, 1 4, kia k i≤ ≤ ≤ ≤ , are given in Table 1. 

Table 1
Coefficients a ki for the Kinematic Application

a ki a k1 a k2 a k3 a k4

a 1i - 0.249150680 + 0.125016350 -0.635550070 + 1.48947730

a 2i + 1.609135400 - 0.686607360 - 0.115719920 + 0.23062341

a 3i + 0.279423430 - 0.119228120 - 0.666404480 + 1.32810730

a 4i + 1.434801600 - 0.719940470 + 0.110362110 - 0.25864503
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(b) Interval Arithmetic Benchmark Application

The initial guessing point used is x (0) =  [1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1] T.

a 5i + 0.000000000 - 0.432419270 + 0.290702030 + 1.16517200

a 6i + 0.400263840 + 0.000000000 + 1.258776700 - 0.26908494

a 7i - 0.800527680 + 0.000000000 - 0.629388360 + 0.53816987

a 8i + 0.000000000 - 0.864838550 + 0.581404060 + 0.58258598

a 9i + 0.074052388 - 0.037157270 + 0.195946620 - 0.20816985

a 10i - 0.083050031 + 0.035436896 - 1.228034200 + 2.68683200

a 11i - 0.386159610 + 0.085383482 + 0.000000000 - 0.69910317

a 12i - 0.755266030 + 0.000000000 - 0.079034221 + 0.35744413

a 13i + 0.504201680 - 0.039251967 + 0.026387877 + 1.24991170

a 14i - 1.091628700 + 0.000000000 - 0.057131430 + 1.46773600

a 15i + 0.000000000 - 0.432419270 - 1.162808100 + 1.16517200

a 16i + 0.049207290 + 0.000000000 + 1.258776700 + 1.07633970

a 17i + 0.049207290 + 0.013873010 + 2.162575000 - 0.69686809

Table 1 (continue)

a ki a k1 a k2 a k3 a k4
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(c) Chemical Equilibrium
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where R is 4.056734.
The initial guessing point used is

(d) Neurophysiology application

2 2
1 1 3

2 2
2 2 4

3 3
3 5 3 6 4

3 3
4 5 1 6 2

2 2
5 5 1 3 6 4 2

2 2
6 5 1 3 6 2 4

1 0
1 0

0
0

0
0

f x x
f x x
f x x x x
f x x x x
f x x x x x x
f x x x x x x

 = + − =


= + − =
 = + =


= + =
 = + =
 = + =

The initial guessing point used is 
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(e) Combustion application
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The initial guessing point used is

(f) Experimental Test
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The initial guessing point used is  

The results of the application problems are listed in Table 2. According to Table 2, it 
can be concluded that the modified SG method serves as another option to solve different 
systems of non-linear equations in real-life applications. Although the modified SG method 
gives a higher number of iterations, function calls, and computation time than the SD 
method in problems a and f, it performs better than CG and BFGS methods since they fail to 
converge in these two problems. Generally, the modified SG method indicates comparable 
results with the other three existing methods. In certain situations, the modified SG method 
exhibits more robust convergence properties than CG and BFGS.  

CONCLUSION 

This paper proposes a modified spectral gradient method for solving non-linear systems. 
The modification is performed since the actual Hessian is unavailable or requires large 
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storage when handling large-scale problems. The proposed method uses a diagonal matrix 
to approximate the actual Hessian matrix instead of the full rank matrix.

It uses the eigenvalues of the actual Hessian matrix as the diagonal entries to 
approximate the inverse of Hessian. The proposed method is derived based on the log-
determinant norm, where the Lagrange multiplier is approximated by using only one 
step of the Newton-Raphson method. The standard line search strategy with the Armijo 
condition is modified to solve the non-linear systems. The proposed method is compared 
with the common existing methods regarding the number of iterations, function calls, 
and computational time. The numerical results show that the proposed method can be 
an alternative in solving systems of non-linear equations in research-tested problems 
and real-life applications, therefore, justifying the contribution of the modified spectral 
gradient method.

Table 2 
Numerical results for application problems

Number of Iteration
Problem Dim Modified SG BFGS SD CG

a 8 169 - 152 -
b 10 4 4 4 3
c 10 2 2 2 2
d 6 2 2 2 2
e 10 2 2 2 2
f 2 8171 - 881 -

Number of Function Call
Problem Dim Modified SG BFGS SD CG

a 8 3450 - 2644 -
b 10 18 26 18 14
c 10 19 41 25 37
d 6 52 56 52 52
e 10 10 14 10 13
f 2 193489 - 21241 -

Computational Time
Problem Dim Modified SG BFGS SD CG

a 8 1.8066 - 1.2886 -
b 10 0.0100 0.0139 0.0096 0.0070
c 10 0.0091 0.0107 0.0087 0.0069
d 6 0.0070 0.0091 0.0082 0.0072
e 10 0.0060 0.0110 0.0060 0.0060
f 2 16.3163 - 1.5309 -

Note: The symbol ‘-’ represents that the method failed to converge. 
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